Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control
نویسندگان
چکیده
The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.
منابع مشابه
A Control Method Based on Dynamic Response of the Airplane for Compensation of Pilot-Induced Oscillations: Benefits and Flaws
Pilot-Induced Oscillation (PIO) is an unwanted, inadvertent phenomenon that has the ability to damage the aircraft completely. This paper suggests a novel control method that can damp PIO after predicting its occurrence. The specific point of this control algorithm is that it contains a preprocessor that will not let the controller be activated unless in the case of probable PIOs, so pilot comm...
متن کاملOn the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane
airplane in presence of asymmetric left-wing damaged. Variations of the aerodynamic parameters, mass and moments of inertia, and the center of gravity due to damage are all considered in the nonlinear mathematical modeling. The proposed discrete-time nonlinear MRAC algorithm applies the recursive least square (RLS) algorithm as a parameter estimator as well as the error between the real ...
متن کاملAdaptive attitude controller of a reentry vehicles based on Back-stepping Dynamic inversion method
This paper presents an attitude control algorithm for a Reusable Launch Vehicle (RLV) with a low lift/drag ratio (L/D < 0.5), in the presence of external disturbances, model uncertainties, control output constraints and the thruster model. The main novelty of proposed control strategy is a new combination of the attitude control methods included backstepping, dynamic inversion and adaptive cont...
متن کاملIntelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کاملBacklash Compensation in Discrete Time Nonlinear Systems Using Dynamic Inversion by Neural Networks
A dynamics inversion compensation scheme is designed for control of nonlinear discrete-time systems with input backlash. The compensator uses backstepping technique with neural networks (NN) for inverting the backlash nonlinearity in the feedforward path. The technique provides a general procedure for using NN to determine the dynamics preinverse of an invertible discrete time dynamical system....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017